

Company history

Founded by Carl Haas in 1904 as a supplier to the watch and clock industry (balance wheel spiral springs)

Milestones of company development

- 1930 Development and manufacture of Nivarox spiral springs (temperaturecompensating iron/nickel alloy in conjunction with Vakuumschmelze Hanau) for mechanical timepieces
- 1950 Start of production of spiral springs for electric measuring equipment and thermometers. Production of round wire springs and series production of stampedbent parts
- 1970 Development and application of laser welding technology
- 1990 Production of electromechanical assemblies (plastic/metal composites)
- 2007 Member of the Kern-Liebers group of companies

Subsidiaries

- 1971 Spirel, Porto, Portugal (manufacturing company with 52 employees)
- 2008 King International, Stribro, Tschechien (manufacturing company with 42 employees)

Certification

- 1993 Q1
- 1996 DIN EN ISO 9001
- 2000 QS 9000 / VDA 6.1
- 2003 ISO / TS 16949, DIN EN ISO 9001
- 2007 DIN EN ISO 13485
- 2008 DIN EN ISO 14001

Legal form

CARL HAAS GmbH Member of the KERN-LIEBERS group of companies

District Court Stuttgart HRB 480934 VAT ID no: DE 188920118 Customs no.: 4098323 Tax no.:15059/02109

Management

Hannes Steim, MBA / University of Toledo / USA

Development of sales	
Sales 10/11	€ 25 m
Export share	51 %

Percentage of sales / market segments			
Automotive industry	69 %		
Medical technology	11 %		
Measuring and control technology	11 %		
Other	9 %		

Employees

Total 186 persons employed

Building area

Approx. 11,000 m²

Machines

- 40 Spring winding machines
- 25 Laser welding machines, 4 are full automated systems
- 40 Automatic lathes
 - 8 Stamping-bending machines
- 22 Injection moulding machines

CAD in use

Solid Edge Data transfer: IGES; STEP; DXF; DWG; Parasolid Pro/ENGINEER Wildfire 3.0 Data transfer: STEP; IGES; VDA; PAR; SAT; DXF; DWG ME 10 2 D Data transfer: DXF; IGES; DWG

Compression springs

Reliable conections

Progress follows tradition

medical_division

Guide wires / PTCA wires, Ureter prosthesis

Connectors

Metal Plastic Components

Decorative Parts, Assembled Parts, 2-Component Parts

Reel-to-Reel Production

Punching and Bent Components

Business policy	SPRING DIVISION (SPIRAL SPRINGS, TECHNICAL SPRINGS, SPECIAL PRODUCTS)		PLASTIC COMPSITE PARTS / STAMPED-BENT PARTS DIVISION	
Work processes /	Winding	Drawing Rolling	Spraying Stamping / Bending	
Production engineering	 Riveting 	 Resistance welding 	Laser welding Resistance welding	
	Laser weldi	ng • Sanding	Assembly Soldering	
	Electroplatin	ng • Assembly		
Dimensions	Wire:	0,05 - 1,0 mm Diameter	Max. spray weight: 300 gr. per end product	
	Band:	0,01 - 0,2 mm Thickness	or mould filling	
		0,8 - 5,0 mm Width	Max. spray volume: 225 ccm	
			• Band dimensions: 1,0 x 350 mm	
			Cutting length: 2.000 mm	
Materials	Metals		Metals Plastics	
			Electronic components Ceramics	
Strategy	TF:	Single item production	Increase level of integration (added value)	
		Concentration on added value / additional	Spraying on belt / production line	
		benefits	Develop competence in composites technology	
	SF:	Automation	Automation	
Core competence	Wire and ba	and processing	Joining techniques	
	Assembly Integrated production			
			Geometric design of material composites, particularly	
			consultation and service	
The future	Globalisation /	New markets for existing technologies	 New markets for existing technologies 	

Functional diagram (Effective from January 1st, 2011)

1 fachliche Betreuung des Einkaufs durch Einkauf bei KL, Herr R. Schmidt

KL-P-PE, Ru, 13.01.2011